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An adaptive multigrid tool for elliptic and parabolic systems
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SUMMARY

This paper describes a multigrid tool for use with adaptively re�ned meshes in two dimensions. A stan-
dard full approximation storage (FAS) multigrid scheme is modi�ed to maintain e�cient performance
on non-uniform grids arising as a result of local mesh re�nement. This is achieved by allowing hanging
nodes to exist but ensuring that at each stage of the FAS algorithm the solution is projected into the
continuous space in which the hanging node values are interpolants of their coarse grid parent values.
A non-linear, elliptic, �nite element example is provided to demonstrate the e�ciency of the proposed
algorithm. However, the method is also suitable for linear and non-linear parabolic problems. Copyright
? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many CFD problems feature regions of high activity which are small relative to the compu-
tational domain. In such cases it is natural to use some form of adaptivity to ensure that the
mesh resolution is su�ciently �ne in these regions to obtain an accurate solution, whilst being
su�ciently coarse elsewhere to maximize e�ciency. Examples of this type are numerous but
include phase �eld simulations of rapid solidi�cation, as described in References [1, 2] for
example. Whilst obtaining a suitably re�ned mesh is undoubtedly a necessary condition for
achieving an e�cient solution, it is by no means su�cient. When the adaptive algorithm is
based upon a hierarchy of nested meshes the multigrid approach naturally suggests itself as a
candidate for an e�cient solver. In Reference [3], for example, a non-linear time-dependent
problem, modelling the spreading of a thin drop over a rough surface is solved very e�ciently
using an implicit, adaptive, time-stepping algorithm built around an FAS multigrid solver. In
that work, however, the di�erent grid levels are obtained through uniform global re�nement,
rather than local, adaptive re�nement. In this paper we propose a simple framework that
allows the e�ciency of local hierarchical re�nement (and coarsening) to be combined with
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multigrid to allow the optimal solution of non-linear elliptic problems and non-linear parabolic
problems with fully implicit time discretization.
The ‘disconnected’ or ‘hanging nodes’ that are found in non-uniform meshes need special

treatment in order to avoid discontinuities in the solution. This has been tackled in many ways
including adding re�nement to eliminate the hanging nodes [2], modifying the �nite element
basis [4, 5] or adding constraint equations for these nodes [6]. The nature of multigrid opens
up other options for dealing with hanging nodes. The MLAT approach of Brandt [7] sets tem-
porary arti�cial Dirichlet conditions at the boundaries of any locally re�ned areas and smooth-
ing takes place on these uniform subdomains. The FAC approach of McCormick et al. [8],
however, uses special implicit �nite-volume-element stensils at the re�nement boundaries to
resolve the �ne and coarse grid residuals in this area. We propose to use a projection method,
originally suggested in the context of linear problems in Reference [6], to impose constraints
on the value of the hanging nodes. We have adapted the basic FAS multigrid method so that
smoothing can be performed over non-uniform grids at each level. This method allows the
use of a straight forward continuous �nite element discretization.

2. ADAPTIVE MESH METHODS

The adaptive mesh algorithm that is used in this work is based on quadrilateral elements that
are stored in a quadtree data structure, as in Reference [2]. The use of a quadtree allows easy
access to all levels within the grid using tree traversal functions, making it an appropriate
choice for use with a multigrid solver. At any given time the current mesh is made up of
those elements that correspond to leaf nodes in the quadtree. The re�nement of an element
involves the creation of four children for the corresponding leaf node in the quadtree. To
coarsen, four elements with a shared parent, and which all correspond to leaf nodes of the
tree, may be replaced by their parent. Numerous constraints are placed on these operations
however to ensure that:

• There is never more than one level of re�nement di�erence between any two neighbour-
ing elements. It follows that there is only ever one hanging node per element edge.

• A speci�ed number of ‘safety layers’ are added to the re�nement at each level. This
ensures that there will always be at least this number of elements at each level between
the interface with the next �ner level and the interface with the next coarser level.

Any element-based re�nement criteria may be used to control the adaptivity, such as local
error estimates or simple error indicators based upon solution gradients, for example.

3. MULTIGRID METHOD

The multigrid method that we propose is based upon the FAS scheme and the use of non-
uniform, locally re�ned grids as described in the previous section. Each level of the multigrid
algorithm is based upon a composite grid covering the whole domain. Figure 1 shows a
small section of a composite grid at three consecutive levels. Hence, a suitable smoother and
suitable restriction and prolongation operators are required for such composite grids. These
are described in this section in the context of a typical non-linear model problem.
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Level N Level N − 1 Level N − 2

Figure 1. Three levels of a composite grid with hanging nodes marked with •.

3.1. Model problem

For the purposes of clarity, in this paper we focus on a single model problem only; however,
the ideas presented extend naturally to more general elliptic problems and to the solution of
parabolic problems using implicit time stepping. The model problem considered here is

−∇2u+ �ueu=f (1)

on the domain �= (−1; 1)× (−1; 1) and subject to u=0 on the Dirichlet boundary. For the
purposes of testing the source term f, is chosen to permit the solution: u=1−tanh(k(x2+y2−
�2)). This solution has a relatively small area of high curvature in the region of x2 +y2 = �2,
making it an appropriate problem to evaluate the multigrid solver on highly re�ned grids. For
the results in this paper �=1, k=25 and �= 1

2 . A Galerkin �nite element discretization of
this problem gives a non-linear algebraic system of the form

K̂(u)u= b̂ (2)

where K̂(u) is the matrix obtained from the assembly of the element sti�ness matrices, without
regard for the hanging nodes, marked with • in Figure 1. These hanging nodes allow discon-
tinuities in the �nite element space along the edges where they lie. A general solution of this
system therefore lies in this non-conforming space. The FAS multigrid method employed here
seeks to solve a modi�ed version of this problem by only ever working in speci�c subspaces
of these non-conforming spaces at each re�nement level.

3.2. Projected Jacobi smoother

The multigrid smoother that is used deals naturally with hanging nodes and is based on
the preconditioned projected conjugate gradient scheme due to Meyer [6]. At each level we
smooth the non-linear system

PTK̂(u)Pu=PTb̂ (3)

where K̂(u) is as in Equation (2) and P is a matrix which projects the solution vector into
the continuous subspace. The e�ect of P is to overwrite the value of each hanging node with
the linear interpolant of its parent nodes. It is important to note that PTPu �= PPTu �= u.
Applying the standard non-linear damped Jacobi correction scheme to this new projected

system will not produce a continuous solution. The correction �j, for node j, must be formed
using vectors contained in Image(P) in order to guarantee that they will preserve the continu-
ity of the solution. An extra projection P is therefore added to the numerator and denominator
of the standard formula to make �j a valid correction. This projected Jacobi (PJ) update main-
tains the solution continuity despite the fact that the �nite element assembly is performed in
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the non-conforming space

�j=!
[P(PTb̂− PTK̂u)]j
[P( @@uj P

TK̂u)]j
(4)

3.3. The multigrid algorithm
Algorithm 1 details the algorithm for the projected FAS multigrid that is proposed. For sim-
plicity a basic two grid version is presented which can easily be extended to a full V-cycle.
The restriction operators, I Ll and Ĩ

L
l , denote simple injection whilst full weighting is used for

the prolongation operator, I lL. The restriction, I
L
l , is a pointwise operator for the solution while

Ĩ
L
l resolves the di�erence in the element support area for the residual between the two grid
levels. These operators do not interfere with the projection method. The �ne grid residual
rl ∈ Image(PT) before it is restricted so all values corresponding to hanging nodes are zero.
Therefore, no information is lost at the boundaries between levels by using injection for the
residual restriction. Injection is also appropriate for the solution restriction, on line 8, since it
cannot create a non-continuous coarse grid solution from a continuous �ne grid solution, i.e.
if vl ∈ Image(P), then vL ∈ Image(P). Likewise, the full weighting prolongation operator, used
on line 13, will create a �ne grid error whose �ne level node values are linear interpolants
of their parent node values. Hence, providing eL ∈ Image(P) the result of the prolongation
el ∈ Image(P). Although it is not highlighted explicitly in this notation, the operators, P and
PT, are clearly di�erent for each grid level.
The measure used as a stopping criterion must be an accurate representation of the system

being solved. For example, the residual norm must be calculated using a residual vector within
Image(P):

r=P[PTb̂− PTK̂u]

Algorithm 1. Projected FAS multigrid–two grid scheme

1: l= level number of current grid
2: L= l− 1 (level number of grid one coarser than l)
3: Choose initial �ne grid solution vl so that Pvl= vl, i.e. vl ∈ Image(P)
4: Calculate the right-hand side b̂

l
and set bl=PTb̂

l

5: Update vl by smoothing �1 times with the system PTK̂
l
(ul)ul= bl using PJ

6: Find residual rl := bl − PTK̂ l(vl)vl
7: Restrict residual rL := Ĩ

L
l (r

l)
8: Restrict solution vL := I Ll (v

l)

9: Calculate coarse grid right-hand side bL := rL + PTK̂
L
(vL)vL

10: Save the initial coarse grid solution vLinit = v
L

11: Solve the system PTK̂
L
(vL)vL= bL exactly

12: Calculate the coarse grid correction eL= vL − vLinit
13: Prolongate the correction el := I lL(e

L)
14: Correct the �ne grid solution vl= vl + el

15: Update vl by smoothing �2 times with the system PTK̂
l
(ul)ul= bl using PJ
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4. RESULTS

This section presents typical results demonstrating the e�ciency and accuracy of the proposed
method. For the steady-state test problem considered here, a full multigrid scheme is used,
with local mesh re�nement undertaken after the solution is obtained at the previous level.
A simple solution gradient monitor is used to trigger local re�nement. No de-re�nement is
used here since the problem is steady state. At each level of the full multigrid the resid-
ual on this grid is used as the stopping criterion. The �rst graph of Figure 2 shows that
the residual is reduced by an almost constant factor at each V-cycle on all uniform and
non-uniform grids.
The second graph of Figure 2 shows that the execution time is linearly dependent on the

system size. This relationship is di�erent by a constant amount between the uniform and non-
uniform cases since there is a slightly greater overhead in the adaptive case for re�nement
and hanging node operations. Nevertheless, the time savings of adaptivity far outweighs this
minor overhead.

Figure 2. Graphs showing the mutligrid convergence at several grid levels and the execution
time for various system sizes.

Table I. Table showing the solution accuracy and system size for various grid levels,
in the uniform and adaptive cases.

Uniform Adaptive
Level no. nodes L2-norm of error no. nodes L2-norm of error

4 289 2.0455651179e-01 289 2.0455651179e-01
5 1089 6.7681314537e-02 1089 6.7681314537e-02
6 4225 1.6865284766e-02 4093 1.6865280871e-02
7 16641 4.2772402758e-03 8873 4.2772482800e-03
8 66049 1.0738744046e-03 23425 1.0739181585e-03
9 263169 2.6877823655e-04 70485 2.6890580843e-04
10 1050625 6.7230013977e-05 227681 6.7730354577e-05
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Finally, note that for both uniformly and locally re�ned grids the error achieves the expected
O(h2) behaviour. Table I illustrates this, as well as showing the di�erence in system size
between the uniform and adaptive cases.

5. DISCUSSION

We have presented a new multigrid tool for adaptively re�ned meshes in two dimensions and
given evidence of its satisfactory convergence and accuracy. The main advantage of the pro-
posed method over alternatives such as Reference [7] is its simplicity in dealing with arbitrary
local re�nement patterns. It should also be noted that, although smoothing is undertaken over
the entire domain at each level, the cost per V-cycle is still optimal when re�ning into any
�nite sub-domain or any shock or boundary layer. In the case of a one-dimensional boundary
layer, for example, the number of unknowns approximately doubles at each grid level and
the e�ciency achieved is therefore similar to that obtained when applying multigrid to a one-
dimensional problem using uniform re�nement. Although results are only presented here for
a single elliptic problem the method has been applied with equal success to a wide range of
non-linear elliptic and parabolic �ow problems. Examples of the latter include fully implicit
discretizations of the porous medium equation [9], convection-dominated convection–di�usion
problems (both single equations and systems), and non-linear phase-�eld systems used to
model rapid solidi�cation [1, 2]. Note that these last two examples yield non-symmetric alge-
braic systems of equations for which the projected multigrid algorithm works equally well.
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